33. Epinephrine and glucagon

Glucagon is a hormone which is produced by alpha cells in the Langerhans islets of the pancreas. The purpose of the hormone is to increase the level of glucose in the blood between meals.

Function

Right after a meal the blood glucose level is high, as the carbohydrates from the meal are converted to glucose and transported into the blood. Some time after the meal the blood glucose level decreases as the tissues of the body consume the glucose for energy, and/or store the glucose as fat, protein or glycogen.

The blood glucose level should always be kept above approximately 4,0 mmol/L. When the blood glucose level sinks toward this level, the pancreas will start to produce more and more glucagon. Glucagon signals to the liver that it should perform gluconeogenesis and glycogenolysis, and that the liver should stop glycolysis. Gluconeogenesis and glycogenolysis both yield glucose, which maintains the blood glucose level within normal range.

Epinephrine

Epinephrine, also called adrenaline, is a hormone which is produced by cells of the medulla of the adrenal gland. The purpose of this hormone is to prepare the body to periods of stress, as part of the “fight or flight” response.

The biochemical purpose of the hormone is to increase the level of glucose in the blood during periods of stress. Whether choosing to fight or to flee, the skeletal muscles require a lot of energy in the form of blood glucose. The hormone also has many other effects on the body, like stimulating the heart, inhibiting peristalsis in the GI tract, increasing blood pressure, etc., but those functions are more relevant in physiology.

Synthesis

Epinephrine is synthesized from tyrosine, like this:

Tyrosine -> L-DOPA -> Dopamine -> Norepinephrine -> Epinephrine

This synthesis needs vitamin C (ascorbate), adoMet, THB and PLP.

Function

The release of epinephrine is stimulated by sympathetic activation, which occurs during stress. Epinephrine will then travel to the liver, where it will bind to β-adrenergic receptors. This will stimulate glycogenolysis, which increases the blood glucose level. Epinephrine will also act on other tissues: